ebovaci ebovaci ebovaci

EBOVAC projects Stakeholder meeting

1

June 22nd, 2021 14:00 – 17:00 CET

The EBOVAC projects have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grants agreements EBOVAC1 n°115854, EBOVAC2 n°115861 and EBOVAC3 n°800176. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Association.

Keep your microphone muted

This meeting is being recorded. With turning on your video/audio, you consent that your images/video/audios will be recorded.

For technical support, please contact "Elodie Acloque" via chat or via email.

Thank you for joining the EBOVAC stakeholder meeting!

ebovaci ebovaci ebovaci

EBOVAC projects Stakeholder meeting

June 22nd, 2021 14:00 – 17:00 CET

The EBOVAC projects have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grants agreements EBOVAC1 n°115854, EBOVAC2 n°115861 and EBOVAC3 n°800176. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Association.

ebovaci ebovaci ebovaci

Opening address

Pr. Yves LEVY

Opening address

InsermTransfert

CEPI

Welcome!

- o More than 120 registered participants to this virtual event
- o All partners from the EBOVAC projects are represented

SCHOOL of HYGIENE STROPICAL

6

janssen 🦵

🌵 Inserm

MURAZ

Thank you for attending the EBOVAC project stakeholder meeting!

Today's objectives

Acknowledge the support of IMI2 and the involvement of our partners

Present some of the major achievements of the EBOVAC projects

To have an opportunity tor reflect on the future of the Ebola vaccine deployment strategy

Opening address

Speakers

Invited Speakers

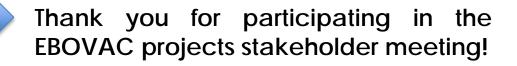
- o Pr. Steve AHUKA-MUNDEKE (INRB)
- o Dr. Pierre MEULIEN (IMI2)

EBOVAC Project coordination

- o Dr. Cynthia ROBINSON (Janssen) Project leader
- o Pr. Deborah WATSON-JONES (LSHTM) Coordinator EBOVAC1 & EBOVAC3
- Pr. Rodolphe THIEBAUT (Inserm) Coordinator EBOVAC2

EBOVAC presenters

- o Dr. Gaudensia MUTUA (IAVI)
- o Dr. Frank BAIDEN (LSHTM/COHMAS),
- o Dr. Houreratou BARRY (Centre Muraz)
- o Elizabeth CLUTTERBUCK (University of Oxford),
- o Christine LACABARATZ (Inserm),
- o Martin GOODIER (LSHTM)
- o Mélanie PRAGUE (Inserm)
- o Pr. Hypolite MUHINDO (UNIKIN)
- o Dr. Melanie SAVILLE (CEPI)
- o Dr. Valerie ORIOL-MATHIEU (Janssen)


Opening address

Discussion panel

- Pr. Deborah WATSON-JONES (LSHTM)
- o Dr. Johan VAN HOOF (Janssen)
- o Pr. Nicolas MEDA (Centre Muraz),
- Pr. Hypolite MUHINDO (University of Kinshasa)
- o Pr. Pierre VAN DAMME (University of Antwerp),
- o Pr. Andrew POLLARD (University of Oxford),
- o Dr. Pierre MEULIEN (IMI2)
- o Pr. Rodolphe THIEBAUT (Inserm)
- o Pr. Yves LEVY (VRI Inserm)

Chairman:

o Pr. Daniel G. BAUSCH (LSHTM)

Some elements of context

A response to March 2014 Ebola outbreak in Western-Africa

- Multivalent filovirus vaccine development ongoing at Janssen since 2008
 - A heterologous 2-dose vaccine regimen for optimal and durable immunity
 - Proof-of-concept obtained in highly stringent NHP model using multivalent vaccines against Marburg, Sudan and Ebola (100% protection)
- In response to the Ebola outbreak, decision was made in August 2014 to establish an accelerated Ebola Monovalent Vaccine Program
 - Heterologous 2-dose monovalent Ebola Zaire vaccine
 - Two vaccine regimen based on replication incompetent vectors:
 - 1. Janssen's Ad26.ZEBOV
 - 2. MVA-BN-Filo manufactured by Bavarian Nordic
- Joining forces to combat Ebola, Innovative Medicines Initiative 2 (IMI2) awarded funding to EBOVAC1 and EBOVAC2 consortia in December 2014 in the frame of the EBOLA+ program.

Opening address

EBOVAC projects overview

o The overall aim of the EBOVAC programme was to assess the safety, immunogenicity and efficacy of a novel Ad26.ZEBOV + MVA-BN-Filo 2-dose heterologous preventive vaccine regimen against EVD.

o Phase1and 3 development of 2-dose heterologous vaccine based on Ad26.ZEBOV and MVA-BN-Filo

o 6 partners inserm janssen Janssen OXFORD

o Phase 2 Phase II development of 2-dose heterologous vaccine based on Ad_{26.7}EBOV and MVA-BN-Filo

o 7 partners

InsermTransfert

- o Bringing a prophylactic Ebola vaccine to licensure
- Additional clinical trials in infants and front line workers

EBOMAN manufacturing of 2-dose Ebola vaccine regimen

promote the acceptance and uptake of new Ebola vaccines

EBOVAC projects Stakeholder meeting, 22 June 2021

An epic journey...

An incredibly fast implementation: end of 2015, after 12 months we had:

- o Initiated 6 clinical studies ongoing in 6 countries
 - Completed enrollment in 3 Phase 1 clinical studies in 3 different countries
 - 11 sites were initiated (with 11 more sites to follow within the next 6 months for Phase 2 in EU/Africa)
- Contributed to 35 % of expected subjects vaccinated in the Ebola Monovalent Vaccine Program
- o Underwent 3 AVAREF joint reviews for 4 protocols
 - Phase 1: 3-4 Feb 2015 in Arusha, Tanzania, > 400 questions
 - Phase 3: 9-10 Apr 2015 in Accra, Ghana, ~ 160 questions
 - Phase 2: 9-11 Jun 2015 in Accra, Ghana, ~ 169 questions
- JnJ had frequent interactions with regulatory agencies including MHRA, FAMHP, ANSM, EMEA Scientific advice, US FDA meetings, WHO...

Opening address

An epic journey...

We had to face many difficulties...

- o Rumors in Ghana forbidding the start of the trial there...
- o A coup in Burkina Faso in 2016...
- Terrorist attacks in Paris in 2015, Ouagadougou 2016 and Nairobi 2020 every time we were planning to have a meeting there...
- o Rebellion in RDC
- Recent outbreaks of Ebola in Guinea and RDC
- o The SARS-COV2 pandemic...

Ο ...

Now: the vaccine got MAA from EMA (01/07/20) and SAGE recommendation (04/06/21)

The commitment of all PIs and staff involved made it possible

The volunteers who accepted to enter the studies made it possible

THANK YOU!

ebovaci ebovaci ebovaci

Opening presentations

June 22nd, 2021 14:15 – 14:25 CET

The EBOVAC projects have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grants agreements EBOVAC1 n°115854, EBOVAC2 n°115861 and EBOVAC3 n°800176. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Association.

Dr. Pierre MEULIEN

IMI2 Ebola+ programme

Pierre Meulien IMI Executive Director 22 June 2021

Starting point of the IMI2 EBOLA + programme

Epidemic in West Africa, from December 2013 to January 2016 The largest Ebola disease outbreak ever

>28 000 confirmed cases and >11 000 deaths

Main Challenges at the time

- **No licensed treatment** specific for Ebola virus disease
- No good and rapid diagnostic test available
- Rapid scaling up of candidate vaccine doses difficult
- Vaccine candidates require very cold temperatures for stability during transport
- **Deployment** (reaching those most in need) **challenging**
- Adherence to vaccination regimens challenging
- Range of products needed for current and future outbreaks
- Lack of local capacity with Ebola or clinical research

Why the Innovative Medicines Initiative ?

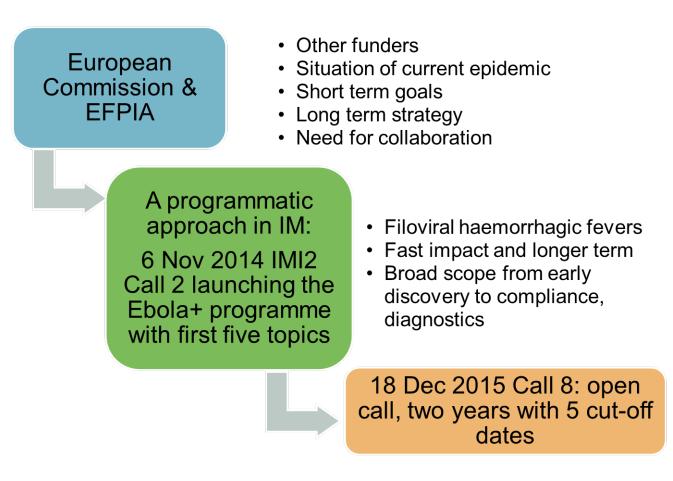
IMI is a **neutral trusted platform** where all involved can engage in open collaboration on shared challenges and aligned interests

IMI's flexibility to fast-track the launch process in an outbreak situation

IMI's flexibility to allow projects to adapt as Ebola epidemic evolved

Collaboration b/w stakeholders and disciplines is a MUST to address the threat

Low expected return on investment into Ebola and other filoviral haemorrhagic fevers drug and vaccine development


A fast-track single-stage process

First fast-track call ! First single-stage call ! First projects to start under IMI2 !


EU fast-track response

IMI2 Ebola+ programme overview

IMI2 Ebola and other filoviral haemorrhagic fevers programme Joint Information repository, Scientific Advisory Board, Ethics Board

Janssen, Vibalogics, Bavarian Nordic

Budget: EFPIA in-kind: 36.0 m EUR IMI JU: 1.0 m EUR Other: 3.2 m EUR

EBOVAC1

Coordinator: LSHTM Other partners: Janssen, INSERM, Oxford University, University of Sierra Leone Budget: EFPIA IKC: 39.9 m EUR IMI JU: 58.3 m EUR

EBOVAC2

Coordinator: INSERM **Other partners:** Janssen, LSHTM, Oxford U., Le Centre Muraz (Burkina Faso), Inserm Transfert, Chu Hopitaux Bordeaux, U. Bordeaux, U. Paris XII Val de Marne

Budget:

EFPIA IKC: 27.9 m EUR IMI JU: 22.8 m EUR

EBOVAC3

Coordinator: LSHTM Other partners: Janssen, INSERM, U. Antwerpen, U. Sierra Leone, Chu Hopitaux Bordeaux, U. Bordeaux, U.Paris Diderot - Paris 7, Universite De Kinshasa, Kinshasa (DRC), CEPI Budget: EFPIA IKC: 21.4 m EUR

IMI JU: 29.4 m EUR

EBODAC

Coordinator: LSHTM **Other partners:** Janssen, World Vision of Ireland, World Vision Sierra Leone, Grameen Foundation

Budget: EFPIA in-kind: 5.4 m EUR - IMI JU: 20.3 m EUR

Thank you

EBOLA + Programme

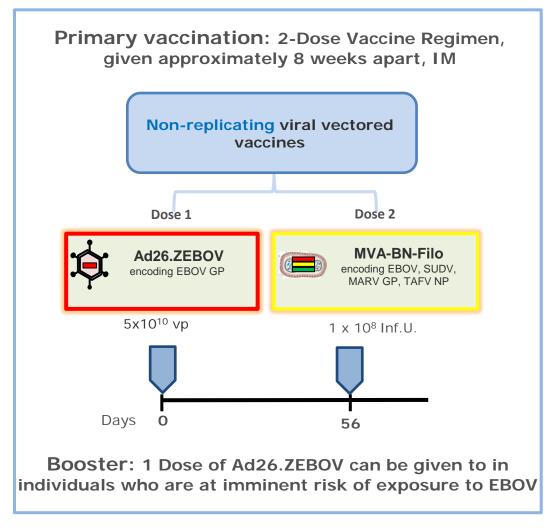
www.imi.europa.eu

ebovaci ebovaci ebovaci

EBOVAC Achievements

June 22nd, 2021 14:35 – 16:10 CET

The EBOVAC projects have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grants agreements EBOVAC1 n°115854, EBOVAC2 n°115861 and EBOVAC3 n°800176. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Association.

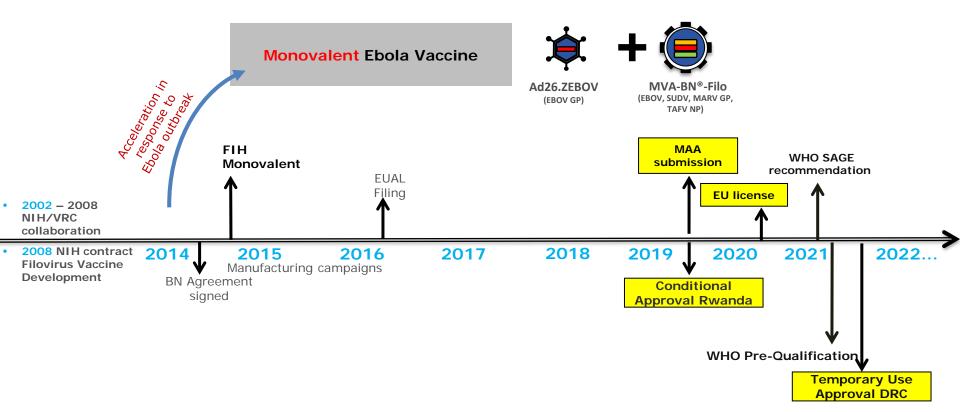


General Janssen Ebola vaccine development overview

Dr. Cynthia ROBINSON

Janssen Monovalent Ebola Prophylactic Vaccine Regimen

The Ebola vaccine regimen contains vaccines based on **platform technologies**:


- Ad26.ZEBOV (Janssen's AdVac® technology)
 - Encoding EBOV GP (Mayinga)
 - MVA-BN-Filo (Bavarian Nordic's MVA-BN® technology)

 Encoding GP of EBOV, SUDV, MARV & NP of TAFV

Both vaccines are **non-replicating** in humans

Overview: Janssen's Filovirus Vaccine Programs

https://www.ema.europa.eu/en/documents/product-information/zabdeno-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/mvabea-epar-product-information_en.pdf WHO list of prequalified vaccines: https://extranet.who.int/pgweb/vaccines/prequalified-vaccines

EBOVAC projects Stakeholder meeting, 22 June 2021

West African Epidemic & Accelerated Clinical **Development of Janssen Prophylactic Ebola Vaccine**

Vaccine Regimen is well-tolerated in Adults

Ad26.ZEBOV

MVA-BN-Filo

Adverse Reactions Following Vaccination with Zabdeno			Adverse Reactions Following Vaccination with Mvabea		
System Organ Class	Frequency	Adverse reactions	System Organ Class	Frequency	Adverse reactions
Nervous system disorders	very common	headache	Gastrointestinal		
	uncommon	dizziness postural	disorders	common	vomiting
Gastrointestinal disorders	common	vomiting	Musculoskeletal and connective tissue	very common	myalgia, arthralgia
Musculoskeletal and connective tissue disorders	very common	arthralgia, myalgia	disorders Skin and subcutaneous	uncommon	pruritus
Skin and subcutaneous tissue disorders	common	pruritus	tissue disorders General disorders and administration site conditions	very common	fatigue, injection site pain, injection site swelling, injection site warmth
General disorders and administration site conditions	very common	chills, fatigue, injection site pain, injection site swelling, injection site warmth			
				common	injection site pruritus
	common	pyrexia, injection site pruritus		uncommon	injection site induration, injection site erythema
	uncommon	injection site induration, injection site erythema			

https://www.ema.europa.eu/en/documents/productinformation/zabdeno-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/productinformation/mvabea-epar-product-information_en.pdf

Vaccine Regimen is well-tolerated in Children

Ad26.ZEBOV

MVA-BN-Filo

Adverse Reactions Reported Following Vaccination with Zabdeno			Adverse Reactions Reported Following Vaccination with Mvabea		
System Organ Class	Frequency	Adverse reactions		Frequency	Adverse reactions
Metabolism and nutrition disorders	very common	decreased appetite	System Organ Class		
Psychiatric disorders	very common	irritability	Musculoskeletal and	common	myalgia, arthralgia
Gastrointestinal disorders	common	vomiting, nausea	connective tissue disorders		
Musculoskeletal and connective tissue disorders	common	arthralgia, myalgia		very common	fatigue, injection site pain
Nervous system disorders	rare	febrile seizures		common	pyrexia, chills, injection site pruritus, injection site swelling, injection site erythema
General disorders and administration site conditions	very common	fatigue, decreased activity, injection site pain	General disorders and administration site conditions		
	common	pyrexia, injection site pruritus, injection site swelling, injection site erythema			

39

Indication and Regulatory Status

Zabdeno[®] (Ad26.ZEBOV), Mvabea[®] (MVA-BN-Filo) vaccine regimen indicated for active immunization to prevent disease caused by Ebola virus (Zaire) in individuals ≥ 1 year of age in the EU

EU Marketing Authorization obtained 01 July 2020 (EC Decision)

- Approval pathway: exceptional circumstances*
- European Public Assessment Report (EPAR)
 - The overall benefit/risk of the Zabdeno[®], Mvabea[®] vaccine regimen is positive
 - High unmet need for a prophylactic vaccine
 - Janssen committed to conduct effectiveness study as post-approval commitment if opportunity arises (status to be reported annually/study to be done in context of an outbreak)

WHO prequalification in April 2021

- Based on EMA dossier
- Parallel review with two National Regulatory Authorities in Africa
- Facilitated process with approximately 20 countries in Africa is under planning with WHO
- It will complement conditional approval in Rwanda in Sept 2019, and the temporary use in DRC in May 2021

*Annex I to Directive 2001/83/EC – Marketing Authorisation under exceptional circumstances https://www.ema.europa.eu/en/documents/assessment-report/zabdeno-epar-public-assessment-report en.pdf https://www.ema.europa.eu/en/documents/product-information/zabdeno-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/mvabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/mvabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/mvabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/wabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/wabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/wabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/wabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/wabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/wabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/wabea-epar-product-information_en.pdf https://www.ema.europa.eu/en/documents/product-information/poweb/vaccines/prequalified-vaccines

Strategic Group of Experts (SAGE) has clarified Ebola vaccination strategies

Complementary tools for comprehensive public health strategy to contain/prevent Ebola outbreaks

	Merck vaccine (rVSV-ZEBOV-GP, Ervebo [®])	Janssen Vaccine Regimen (Ad26.ZEBOV, MVA-BN-Filo, Zabdeno [®] , Mvabea ^{®)}
Outbreak response (Reactive use)	Ring vaccination and HCWs/FLWs in affected areas	People living in affected areas, and those living in neighboring areas but who are not eligible for Merck's vaccine
In the absence of outbreak (Preventive or prophylactic use)		National response teams International responders Laboratory workers with possible exposure to Ebola virus and those working in specialized research units and Ebola Treatment Units (large scale preventive vaccinations in the absence of an outbreak not recommended)

https://www.ema.europa.eu/en/documents/product-information/zabdeno-epar-product-information_en.pdf

https://www.ema.europa.eu/en/documents/product-information/mvabea-epar-product-information_en.pdf

https://www.fda.gov/vaccines-blood-biologics/ervebo

https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health <u>https://www.who.int/immunization/policy/position_papers/interim_ebola_recommendations_may_2019.pdf</u> SAGE 24 March 2021

EBOVAC projects Stakeholder meeting, 22 June 2021

Steps Toward Widespread Vaccine Deployment

- $\sqrt{}$ Approval by Stringent Regulatory Authority (EMA, FDA, MHRA, etc.)
- $\sqrt{10}$ Formal SAGE Group Meeting & Recommendation
- $\sqrt{}$ WHO Prequalification (PQ)
 - Facilitated Process

National Licenses by African Regulatory Authorities

Prophylactic Vaccine Deployment by African National Authorities

Summary

Private-public partnerships *critical* for successful registration of the vaccine oFinancial support oPartners' contributions oUnique set up of partnership

Ongoing partnerships' support *critical* for setting up the vaccine for its intended use • Answering additional questions about vaccine

Lasting legacy of these commitments • Publications

- Capacity maintenance (training of personnel, attraction for new projects)
- o Lessons learned for accelerated development

Presentations of some major projects achievements: **Clinical trials**

Clinical trials

Chaired by Pr. Deborah WATSON-JONES

Presentations of some major projects achievements: **Clinical trials**

Phase 1 clinical trials

Dr. Gaudensia MUTUA

ʹυκ

Phase 1 Clinical trials sites

Phase I studies – US

US

- Establish preliminary safety and immunogenicity
- Identify optimal heterogenous prime-boost regimen
- Investigate durability of immune responses
- Number of volunteers: 72 (UK) and 127(US)

AFRICA

EBL1003 (KE/GH**) EBL1004 (UG/TZ)

AF

• Replicate data from FIH studies in countries unaffected by the EBL outbreak

Phase I studies – Africa

& UK (EBOVAC 1)

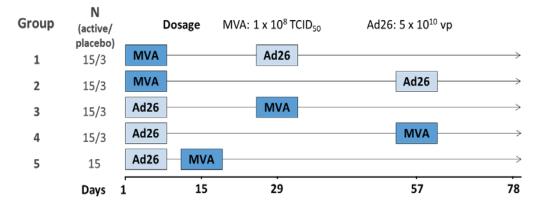
Uganda, Tanzania

Kenya

- Confirm preliminary safety and immunogenicity
- Number of volunteer 148

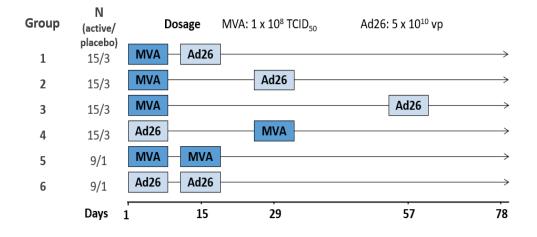
Phase 1 Clinical trials sites

In Ghana....

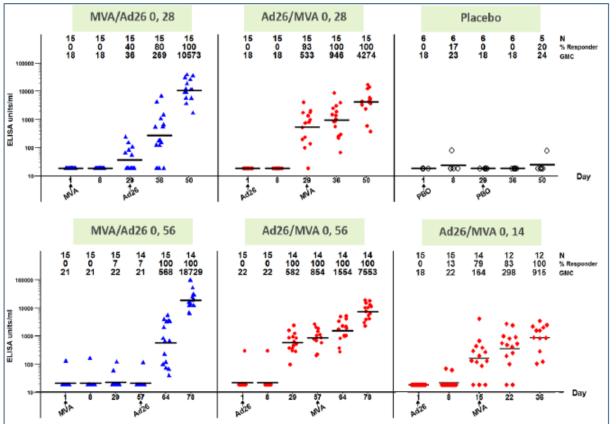


Study Approved by Ghana FDA after significant delays

- Followed by community protests
- o Government stops study
- Ghana college of science in support of government action


EBL1001 and EBL1002 FIH clinical trials

EBL1001 (UK)


In EBL1001: Randomized (5:1) to receive MVA and Ad26 or placebo. 15 participants were included in a nonrandomized group and received openlabel Ad26/MVA with 14-day primeboost interval.

- EBL1002 (US)

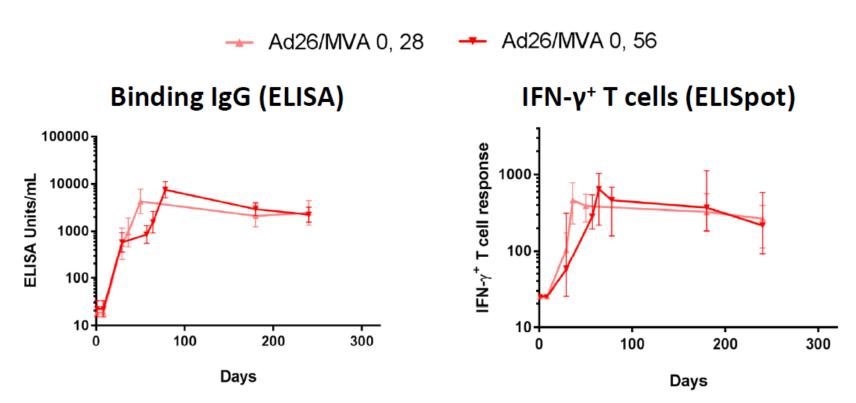
In EBL1002: Four heterologous primeboost schedules randomized (5:1) to receive MVA and Ad26 or placebo in each schedule. Separately, MVA and Ad26 homologous prime-boost schedules with 14-day interval were randomized (9:1) to receive MVA or Ad26 or placebo in each schedule.

Antibody Responses

Humoral responses

 Significant boosting of antibody responses with all heterologous prime-boost regimens

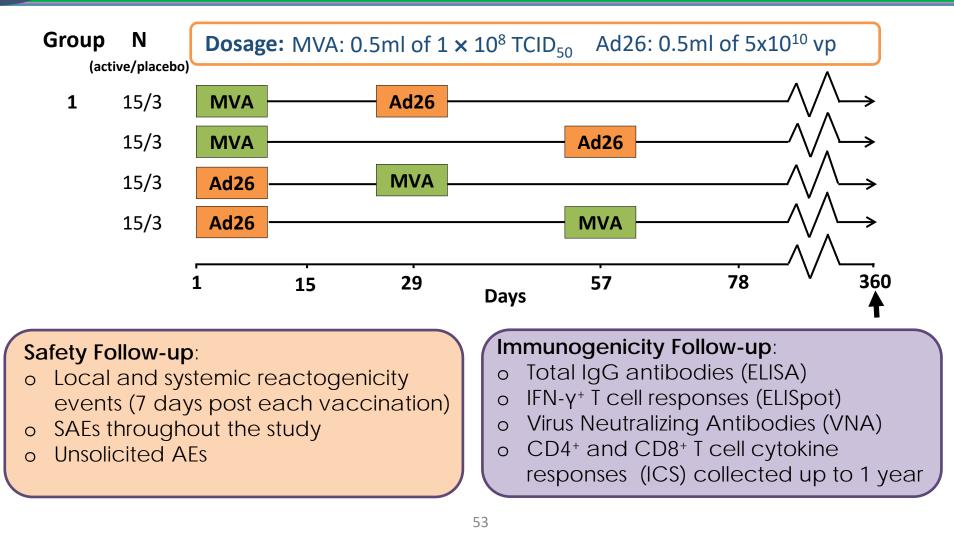
Cellular Responses (Not shown)


 Similar trajectories observed for CD4+ and CD8+ T cell responses

Prime-boost interval (28 vs 56 days) had no impact on responses

Marginal insignificant differences between MVA/AD26 vs AD26/MVA regimens

Durability of Immune Responses



Durability of humoral and cellular immune responses induced by AD26/MVA

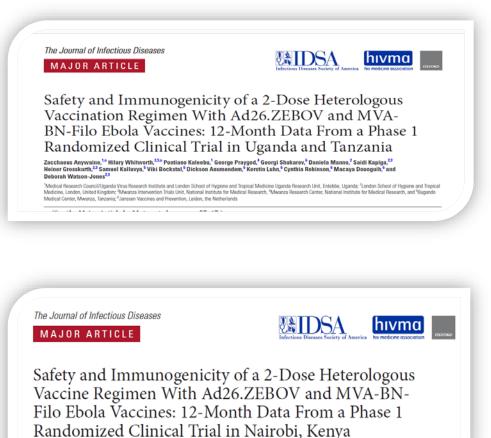
No significant difference with different time intervals (Not shown)

No significant difference between AD26/MVA and MVA/Ad26 (Not Shown)

EBL1003 (N=72) and EBL1004 (N=72) trial design

Clinicaltrials.gov: NCT02376426/ NCT02376400.

TCID₅₀, 50% tissue culture infectious dose; vp, viral particles


EBL1003 & EBL1004 Results Confirmed....

SAFETY

- ✓ Safety profile comparable to EBL1001
 - Most frequent Reactogenicity events Local site pain and headache and no IP related SAE

IMMUNOGENICITY

- Robust binding antibody responses sustained up to 12months post-prime
- ✓ Substantial, rapid and sustained boosting of neutralizing antibodies seen with all regimens
- Ad26-primed regimens show an earlier antibody response than MVA-primed regimens (but no difference at later time points)
- ✓ CD4+ T cell cytokine responses similar to those of Western participants
- Fewer participants displayed CD8+ T cell cytokine responses compared to US/UK studies

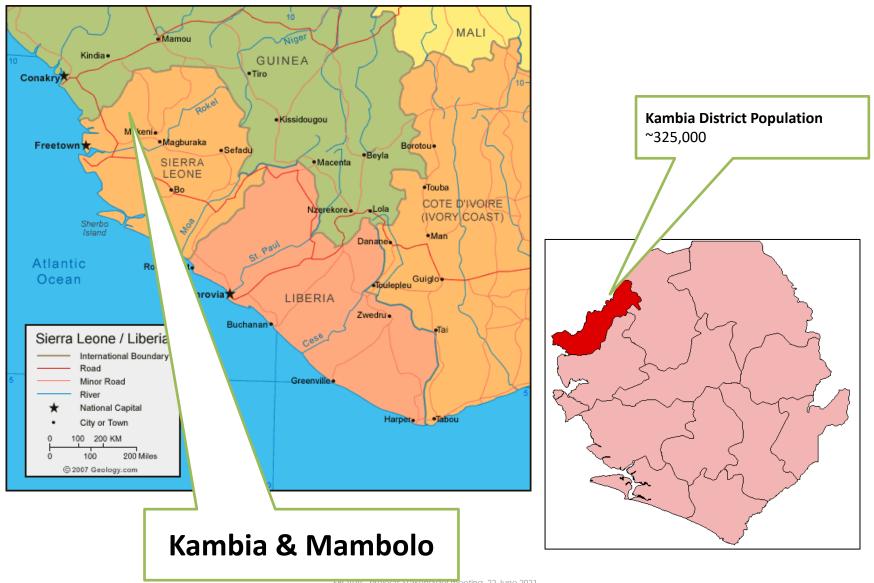
Gaudensia Mutua,¹ Omu Anzala,¹ Kerstin Luhn,² Cynthia Robinson,² Viki Bockstal,² Dickson Anumendem,² and Macaya Douoguih² ¹ Kenya AIOS Vaccine Initiative Institute of Clinical Research, College of Health Sciences, University of Nairobi, Kenya; and ²Janssen Vaccines and Prevention, Leiden, the Netherlands

Phase 1: Summary of Results

The Ad26.ZEBOV and MVA-BN-Filo heterologous prime-boost vaccine regimen was safe and well tolerated in healthy ADULT American/European and African Populations

The Ad26.ZEBOV and MVA-BN-Filo heterologous prime-boost vaccine regimen was conferred robust and durable immune responses to Ebola glycoprotein in healthy ADULT US, UK and African volunteers

Presentations of some major projects achievements: **Clinical trials**


Phase 1 and 3 clinical trials in Sierra Leone

Dr. Frank BAIDEN

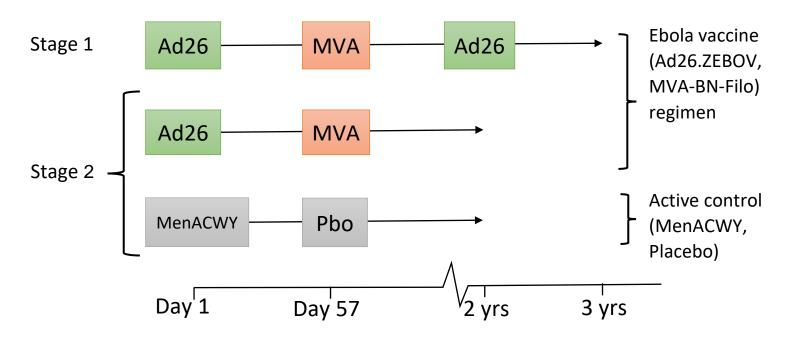
Kambia district in rural northern Sierra Leone

Presentations of some major projects achievements:
 EBOVAC studies in Sierra Leone – May 2015 to date

EBOVAC1:

- EBL3001 Phase 3 Ad26.ZEBOV, MVA-BN-Filo D0/56 regimen trial (*Completed*)
- EBL2011 Children Booster Study (About to start in Kambia)
- Ancillary studies (e.g. malaria infection and vaccine immune responses; Ebola serology in screened population)

PREVAC trial: Multi-site evaluation of two Ebola vaccines (with Guinea, Liberia,Mali)(Data analysis is ongoing)

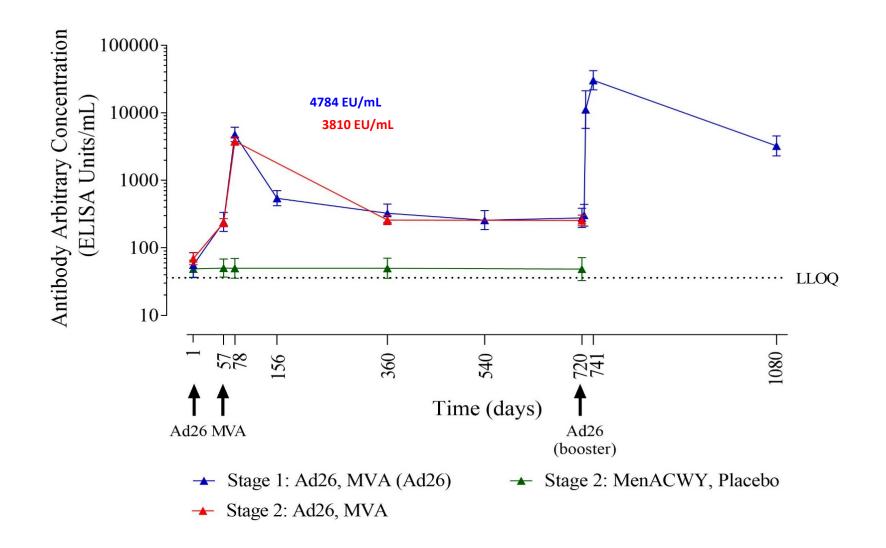


Social science: Community dynamics, attitudes and perceptions on clinical trials

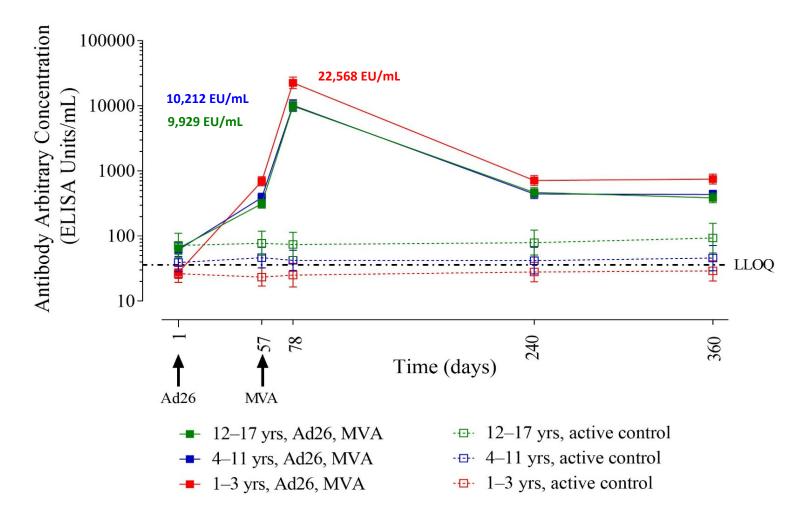
EBOVAC3:

- EBL3005 Long term follow-up of EBL3001 participants (to 5 years)
- EBL2005 infant study (Analysis to commence soon)

EBL3001 study design


In Stage 1

- 43 adults received Ad26, MVA and were followed up for 2 years
- Ad26 booster at 2yrs and followed up for an additional year


In Stage 2

- 400 adults and 576 children (age de-escalation)
- Randomised 3:1 to Ad26, MVA or active control (MenACWY, Placebo)
- Follow-up for 2 years (adults) and 1 year (children)

Anti-GP Binding Antibody Response in Adults

Anti-GP Binding Antibody Response in children

Immune responses paediatric participants were higher compared to adults in the same study

Challenges and lessons learnt

 Change from efficacy to immunogenicity and safety study

Limited onsite experience in clinical trials

- Training and refresher training
- Community engagement

 Working with EPI programme to identify eligible children

Personnel, equipment & maintenance


- External expertise to fill critical gaps
- Importations e.g. equipment for ER in district hospital

Cold chain & Laboratory capacity

- Vaccine depot
 - 24/7 generator power. Storage capacity: 2-8°C, -20°C & - 80°C
- Haematology, biochemistry, malaria & ELISA
- GeneXpert Ebola PCR assay

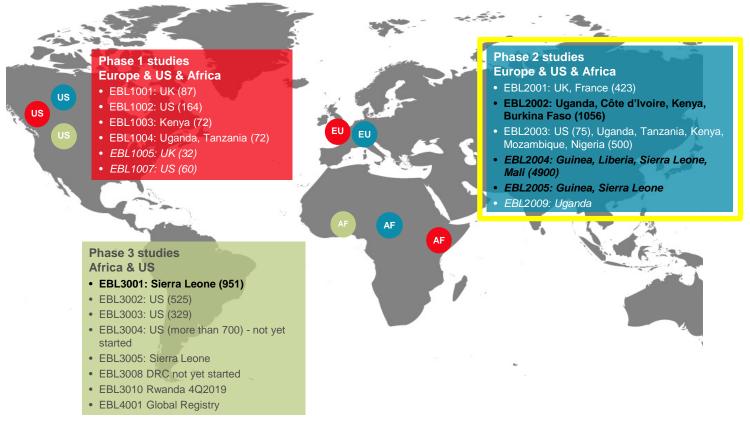
Upcoming and future work

• EBOVAC 1

- o Phase 2, **open label** Safety and immunogenicity of Ad26.ZEBOV booster.
- EBL2011 booster study on healthy children previously (>2 years) vaccinated with Ad26.ZEBOV (dose 1) followed by MVA-BN-Filo (dose 2) 56 days later. (Starting in July 2021)
- Malaria: Impact of repeated malaria infections on vaccine immune response using bead-based assay

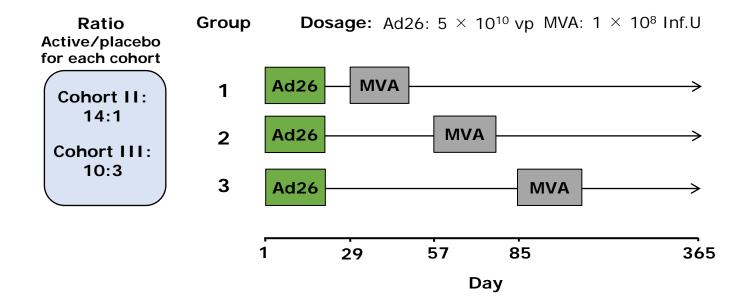
Presentations of some major projects achievements: **Clinical trials**

Phase 2 clinical trials in Europe and Africa

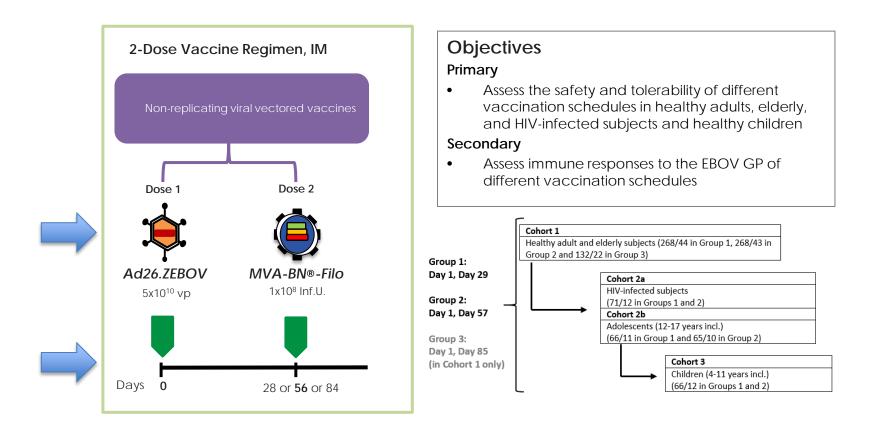

Dr. Houreratou BARRY

Phase 2 clinical trials

EBOVAC2 STUDIES


A total of 20 clinical studies contribute to the safety and immunogenicity profile of Ad26.ZEBOV, MVA-BN-Filo. 4 studies include children from 4 months to 17 years of age (EBL2002, PREVAC (2004), 2005 and 3001). Study EBL2002 is first study to include children in east Africa vaccinated with Ad26.ZEBOV and MVA-BN-Filo

Phase 2 clinical trials


o EBL2001

Phase 2 clinical trials

STUDY DESIGN: EBL2002

A randomized, blinded, placebo-controlled, Phase 2 Study

Phase 2 clinical trials

SAFETY RESULTS

EBL2001: most frequent unsolicited adverse events (AEs) and serious adverse events (SAEs) throughout the study in Cohorts II and III.

	Incidence, reports following n doses (%)					
	Ad26.ZEBOV	MVA-BN-Filo	All Placebo			
Doses	N = 332	N = 236	N = 72			
Any Unsolicited AE	115 (34·6)	81 (34·3)	24 (33·3)			
MEDRA classes of main reported AEs						
Infections and infestations	30 (9·0)	28 (11·9)	7 (9·7)			
Upper respiratory tract Infection	4 (1·2)	12 (5·1)	3 (4·2)			
Rhinitis	10 (3.0)	7 (3.0)	0			
Nervous system disorders	17 (5·1)	12 (5·1)	3 (4·2)			
Headache	5 (1.5)	7 (3.0)	2 (2.8)			
Investigations	16 (4·8)	13 (5·5)	2 (2·8)			
Respiratory, thoracic and mediastinal disorders	17 (5·1)	7 (3·0)	2 (2·8)			
Gastrointestinal disorders	9 (2·7)	8 (3·4)	5 (6·9)			
Musculoskeletal and connective tissue disorders	12 (3·6)	6 (2·5)	3 (4·2)			
General disorders and administration site conditions	10 (3.0)	5 (2·1)	3 (4·2)			
SAEs throughout study	Ad26.ZEBOV &	All placebo				
	N =	N = 44				
Any reported SAE	11 (2 (4·5)				
SAE related to vaccination	(0				

Phase 2 clinical trials

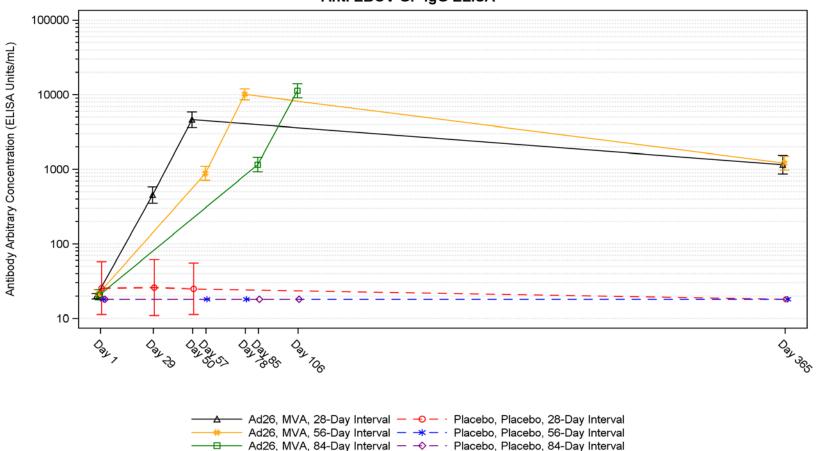
SAFETY RESULTS

EBL2002: Frequency of solicited and unsolicited adverse events in adults

	Healthy Adults			Adults with HIV			
	Ad26.ZEBOV N=632 %	MVA-BN-Filo N=517 %	Placebo N=225 %	Ad26.ZEBOV N=118 %	MVA-BN-Filo N=117 %	Placebo N=48 %	
Overall solicited AEs	70.7	72.1	61.3	78.8	55.6	43.8	
Any solicited Grade 3	2.5	2.5	2.2	2.5	0	2.1	
Overall solicited local AEs	54.0	57.3	37.8	58.5	43.6	20.8	
Any solicited local Grade 3	0.3	0.8	0	0	0	0	
Overall solicited systemic AEs	62.7	59.2	54.2	49.6	67.8	39.6	
Any solicited systemic Grade 3	2.5	2.1	2.2	0	2.5	2.1	
Injection site pain				Injection site pain			
Most frequent local solicited AE	48.3	51.3	30.7	43.2	35.9	18.8	
Most frequent systemic	Fatigue		Fatigue				
solicited AE	46.4	38.1	38.2	51.7	36.8	31.3	
Any pyrexia (defined as ≥38°C)	4.6	6.4	3.1	11.0	2.6	10.4	
Grade 3 pyrexia (defined as ≥39ºC)	0.8	1.7	0.4	2.5	0	2.1	
Overall unsolicited AEs	35.4	32.1	34.7	42.4	37.6	37.5	

EBOVAC projects Stakeholder meeting, 22 June 2021

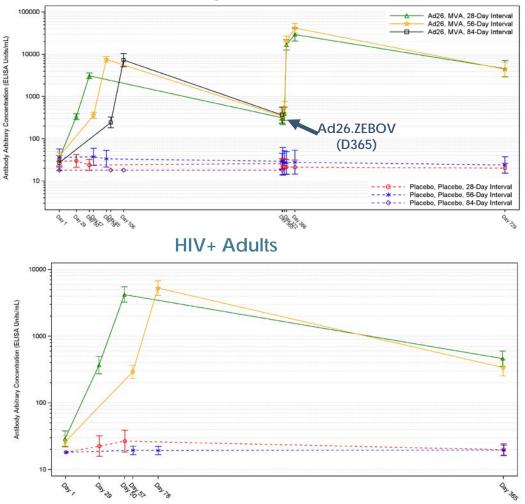
Phase 2 clinical trials


SAFETY RESULTS

EBL2002: Frequency of solicited and unsolicited adverse events in Children and adolescents

	Adolescents			Children			
	Ad26.ZEBOV N=110	MVA-BN-Filo N=109	Pbo N=41	Ad26.ZEBOV N=108	MVA-BN- Filo N=108	Pbo N=47	
	%	%	%	%	%	%	
Overall solicited local AEs	50.9	45.0	34.1	50.9	40.7	31.9	
Any solicited local grade 3	0	0.9	2.4	2.8	0	0	
Overall solicited systemic AEs	53.6	47.7	43.9	43.5	18.5	23.4	
Any solicited systemic grade 3	1.8	0	0	0.9	0	0	
Most frequent local solicited AE (injection site pain)	45.5	44.0	14.6	41.7	33.3	21.3	
Most frequent systemic solicited AE	Headache			Decreased activity			
	42.7	35.8	36.6	18.5	9.3	8.5	
Any pyrexia (defined as ≥38°C)	5.5	4.6	4.9	22.2	3.7	4.3	
Grade 3 pyrexia (defined as ≥40°C)	0.9	0	0	0	0	0	
Overall unsolicited AEs	53.6	40.4	41.5	38.9	38.9	48.9	

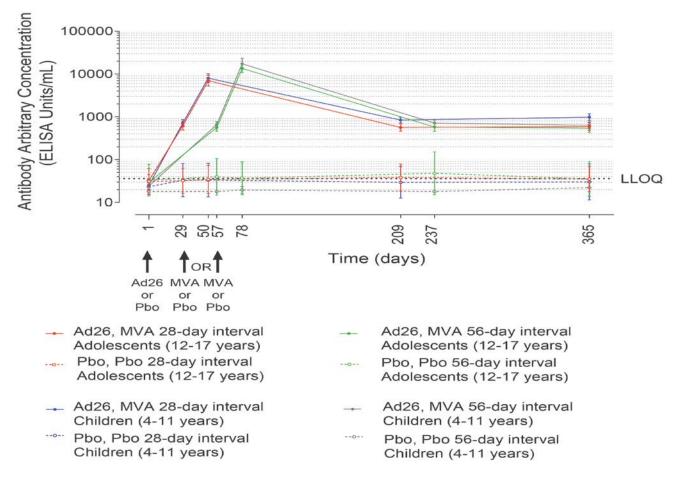
Phase 2 clinical trials


EBL2001: Binding Antibody Responses(Cohort liand III) EBOV GP FANG ELISA; ELISA units/mL

Anti EBOV GP IgG ELISA

Phase 2 clinical trials

EBL2002: Adults Binding Antibody Responses EBOV GP FANG ELISA (EU/mL)



Healthy Adults

- Ad26.ZEBOV, MVA-BN-Filo induces **humoral memory** that can rapidly be re-activated
- Strong anamnestic responses within 7 days post booster (55-fold increase)
- 21 days post booster, binding antibody levels 5 to 9-fold greater than 21 days post dose 2 levels
- Post booster antibodies persist at ± 10-fold higher level than post 2-dose regimen
- Binding antibody response levels similar between the binding antibody responses in HIVinfected versus healthy adults

Phase 2 clinical trials

EBL2002: Geometric mean concentrations of EBOV-specific binding antibodies (FANG ELISA, 95% CI) in adolescents and children

Phase 2 clinical trials

MAIN POINTS

The Ad26.ZEBOV, MVA-BN-Filo vaccine regimens (0,28 – 0,56 – 0,84 intervals) were well-tolerated and no safety concerns were identified in healthy adults or in adults with HIV and children

Heterologous 2-dose Ad26.ZEBOV, MVA-BN-Filo vaccine regimen induces **humoral memory** that can rapidly be re-activated

Strong anamnestic antibody responses within 7 days post booster (40-55-fold increase)

21 days post-booster dose, binding antibody levels 3-5-fold greater than peak post-dose 2 levels

Post-booster antibodies persist at \pm 10-fold higher level than post 2-dose regimen

The Ad26.ZEBOV, MVA-BN-Filo vaccine regimen was well tolerated in pediatric cohorts and produced robust vaccine-induced immune responses, which persisted up to one year post AD26.ZEBOV in both EBL2002 and EBL3001

Immunology and Modelling

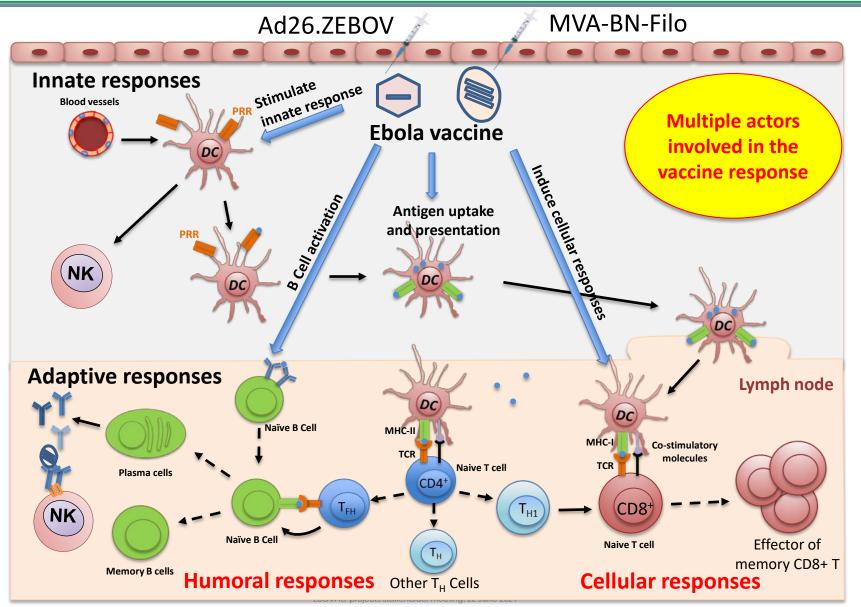
Immunology and Modelling

Chaired by Pr. Rodolphe THIEBAUT

Immunology and Modelling

Little was known in the mechanisms of the vaccine triggered immune response before the EBOVAC projects.

The objective of the EBOVAC 2 exploratory work was to **perform detailed analysis of the immune response to the heterologous 2-dose Ad26.ZEBOV**, **MVA-BN-Filo vaccine regimen in phase 2 trials** conducted in European and African populations, with 3 major purposes:


To measure the humoral and cellular response to the vaccine

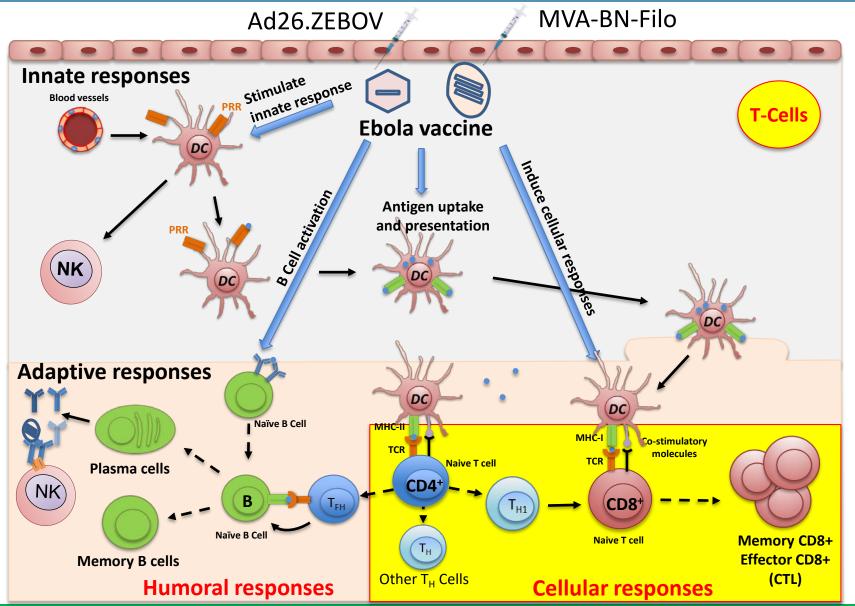
To further explore the immune pathways triggered by vaccination

To use these data to build and refine an in silico model of the immune response to the vaccine

Immunological pathways

Immunology and Modelling

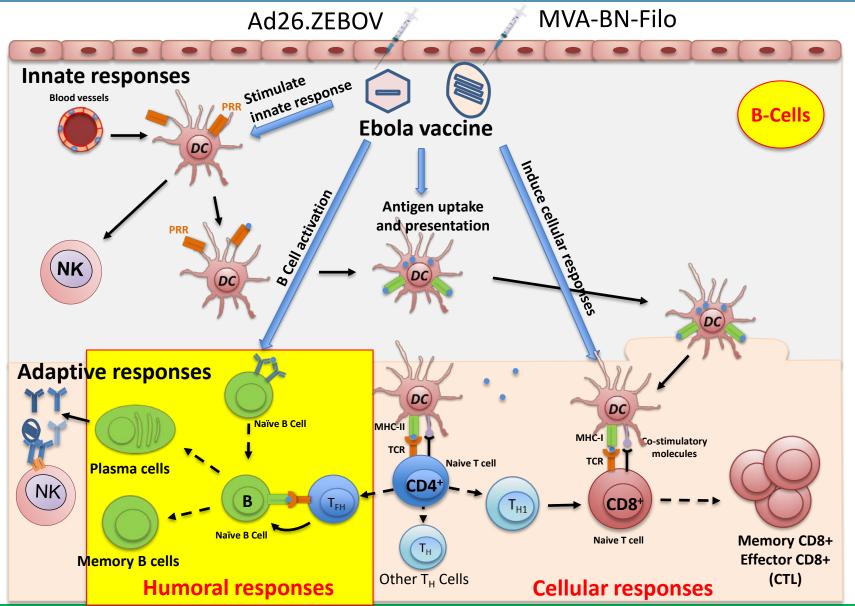
Immunology of the vaccine response


T cell response

Dr. Christine LACABARATZ

Explored Immunological Pathways

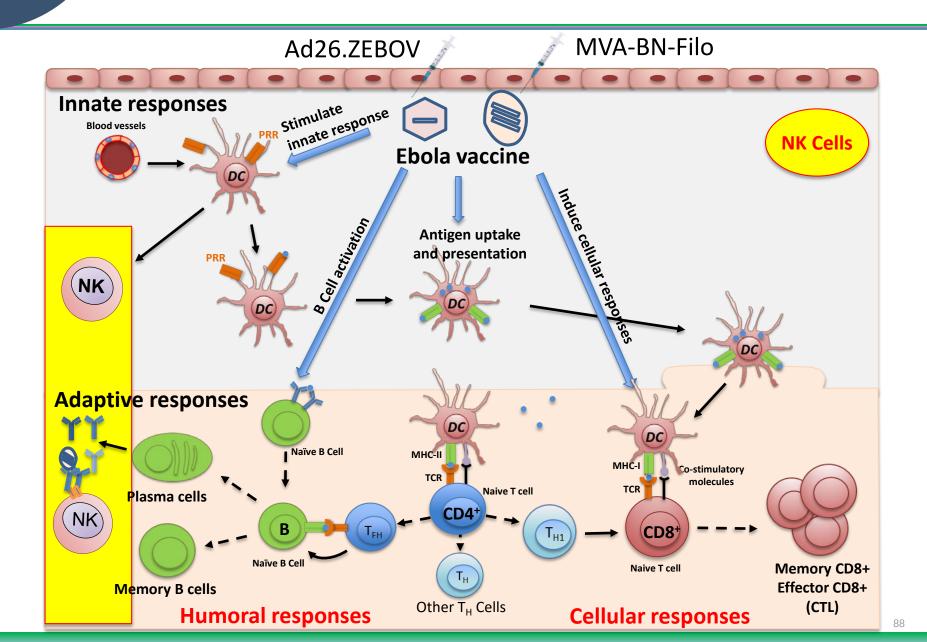
Immunology and Modelling


Immunology of the vaccine response

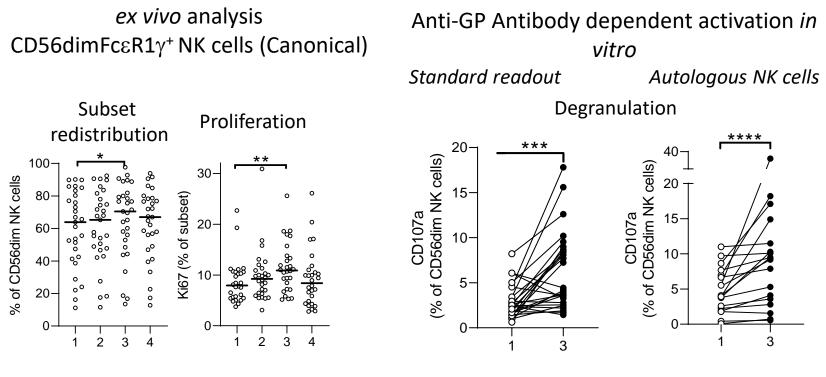
B cell response

Dr. Elizabeth CLUTTERBUCK

Explored Immunological Pathways


Immunology and Modelling

Immunology of the vaccine response


NK cell response

Dr. Martin GOODIER

Explored Immunological Pathways

Presentations of some major projects achievements: NK cell response data EBL2002

Study Visit

Redistribution and proliferation towards less differentiated NK cells

Robust antibody dependent activation with a standard readout and autologous NK cells

NK cell response data EBL1001, 2001, 2002

Sequence of dosing Ad26, MVA							
Study		Assay					
	Dosing	Ex-vivo	Antibody- dependent	Antibody- dependent	Innate		
	intervals	Activation (A) Proliferation	degranulation <i>in-vitro</i>	degranulation <i>in-vitro</i>	Activation		
	1	(P)	Standard NK cell	Autologous NK cell	In-vitro		
	1	Subset redistribution (SR) ¹	readout ¹	readout ¹	Ebola-GP ²		
EBL1001	28 days	21 days post dose 2	21 days post dose 2	ND	+++		
Oxford	56 days	A *	****				
UK	(P ***					
		SR **					
Reference 1. Wa	gstaffe et al.	JID. 2019: <u>https://doi.org/10.1093/</u>	infdis/jiz657 2. Wagstaffe et a	al. JCI. 2020: <u>https://doi.org/10.1</u>	. <u>172/jci132438</u>		
EBL2001	28 days	Up to 180 days post dose 2	14 days post dose 2	14 days post dose 2	++++		
Inserm	56 days	A *	****	*			
France	84 days	P ns	180 days post dose 2	180 days post dose 2			
	()	SR **	***	***			
Reference 3. Wa	Reference 3. Wagstaffe et al. NpJ vaccines. 2021: <u>https://doi.org/10.1038/s41541-021-00280-0</u>						
EBL2002	28 days	21 days post dose 2	21 days post dose 2	21 days post dose 2	ND		
Kenya	56 days	A ns	* * * *	***			
Uganda	(P**					
Burkina-Faso		SR *					
Reference 4. 2021. Manuscript in preparation.							

^{1.} *P* value compared to baseline: * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001; ns: not significant ND: not determined

2. P value compared to unstimulated: ++++ <0.0001 projects Stakeholder meeting, 22 June 2021

Immunology: CONCLUSION

Vaccine regimen elicits:

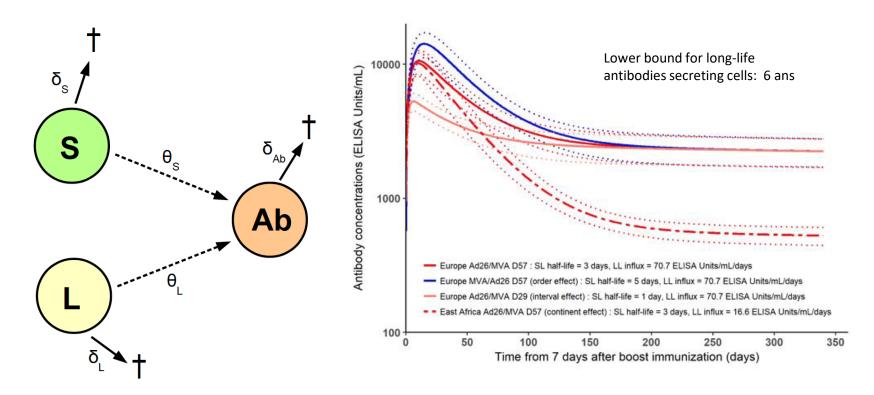
- Durable EBOV GP-specific CD4+ and CD8+ T cell proliferation and polyfunctional cytotoxic CD8+ T cells until at least 6 months
- Strong induction of EBOV GP-specific BMEM by Ad26.ZEBOV observed, along with TFH induction, differential gene expression, and BCR sequence changes, indicative of Germinal Centre activation. Maintained for at least 6 months post dose 2.

Increased frequency of less differentiated NK cells associated with proliferative activity, robust antibody-dependent activation of NK cells up to 6 months post dose 2.

Immunology and Modelling

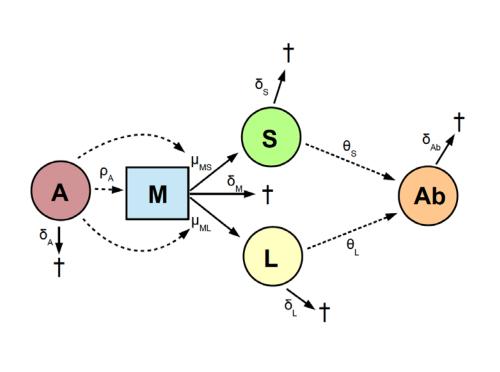
Modelisation of the immune response

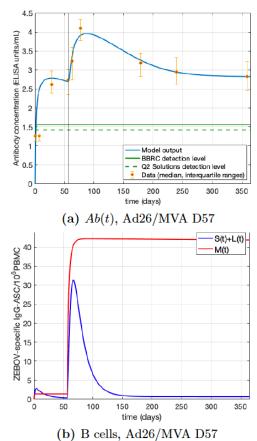
Dr. Mélanie PRAGUE



Modelisation of the immune response

Within host model of response to Ebola vaccination

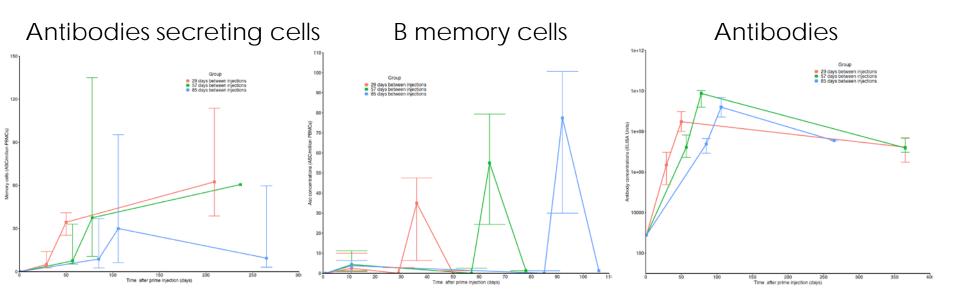

 Pasin et al. (2019) journal of virology Dynamics of the humoral immune response to a prime-boost Ebola vaccine: quantification and sources of variation



Modelisation of the immune response

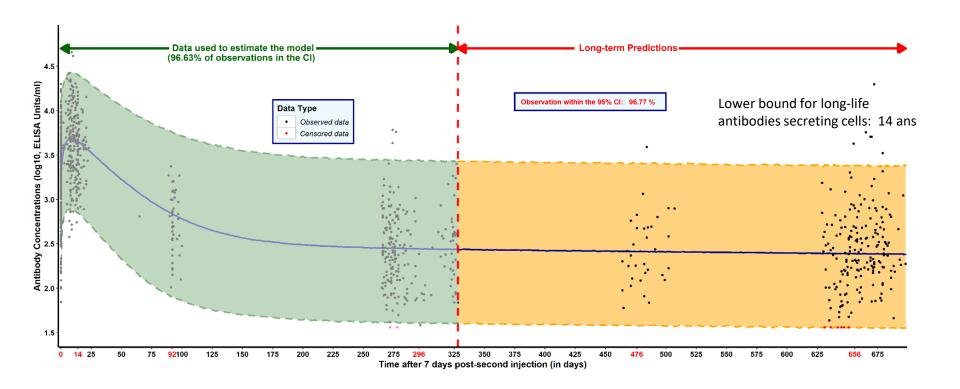
Within host model of persistence to Ebola vaccination (model calibration)

 Balelli et al. (2020) <u>Journal of theoretical biology</u>. A model for establishment, maintenance and reactivation of the immune response after vaccination against Ebola virus



Presentations of some major projects achievements: Modelisation of the immune response

Extend the results for available data


o Estimation (vs. calibration) on EBL2001 Data

Modelisation of the immune response

Extend the results for available data

- o Estimation (vs. calibration) on EBL2001 Data
- o Prediction of two years response to vaccination on EBL3001 Data

Future and ongoing work

Chaired by Dr. Cynthia ROBINSON

EBL2007 Study population and anthropological angle

Pr. Hypolite MUHINDO

EBL2007 Study population and anthropological angle

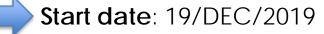
EBL2007 SHORT OVERVIEW

Open-label, monocentric, phase 2 clinical trial

- 699 enrolled participants o Day 1: Ad26.ZEBOV
 - o Day 57: MVA-BN-Filo

Two randomization groups o Y1 booster: Ad26.ZEBOV o Y2 booster: Ad26.ZEBOV

Safety and immunogenicity


<u>Accomplishment</u>: 91% retention rate after 1 year <u>Currently ongoing</u>: Group 1 phone contacts 6 months post booster EBL2007 Study population and anthropological angle

EBL2007 SHORT OVERVIEW

al: Boende General Reference Hospital, Tshuapa province, DR Congo

STUDY POPULATION DEMOGRAPHICS

Active health care providers (HCPs) and frontliners

Mean age: 45 years old

Many more male (76.39%) HCP and frontliners than females (23.61%)

Demographics	Ν	%	Mean	SD	Min-Max
Age	699		45.01	11.99	19.00-71.00
Gender Male Female	534 165	76.39 23.61			

STUDY POPULATION PROFESSION & ESTABLISHMENT OF WORK

Top three professions : community health workers, nurses and first aid workers

Main workplace: Boende health center

Professions	Ν	%	Establishment
Community Health workers	236	33.76	Health cente
Nurse	182	26.04	Other (e.g. re
First aid worker	177	25.32	Hospital
Hygienist	37	5.29	Health post
Midwife	30	4.29	Health zone
Medical doctors	13	1.86	
Health facility cleaners	10	1.43	
Care giver	7	1.00	
Laboratory technician	2	0.29	
Nutritionist	2	0.29	
Pharmacist assistant	2	0.29	
Vaccination campaigner	1	0.14	

Establishment of work	Ν	%
Health center	371	53.08
Other (e.g. red-cross)	198	28.33
Hospital	85	12.16
Health post	37	5.29
Health zone	8	1.14

ANTHROPOLOGICAL ANGLE

Improving preparedness by vaccination of a well-known population at risk (e.g. HCPs) is necessary, but **without community engagement** (CE), it will be **useless**

With the support of social sciences:

- Address complex social relations between participants and community members with the four Rs (reciprocity, relatability, relationships, and respect) (see Dada et al., 2019)
- Understand social dynamics and power structures by being careful about the concept of 'the community'. (see Wilkinson et al., 2017)
- Conduct more in-depth research on effective models of CE for both global health emergency and disease preparedness settings

Building trust with those people (in)directly involved

EBL2007 Study population and anthropological angle

FOR EBL2007 SPECIFICALLY:

Explore community experiences of previous outbreak (Boende, 2014) and perceptions of Ebola vaccine options Among the medical staff, the trial participants and the "community" while taking complex social and political relationships into account

Compare Trials EBL3008 (Goma) and EBL2007 (Boende) E.g. perception of inclusion/exclusion of pregnant-lactating women for Ebola vaccination

Describe Local Ebola - ecosystem - livelihood dynamics with a participative modelling approach

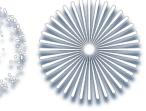
Summarize the regulatory authorities' experience of studying and deploying an unlicensed vaccine under compassionate use during an epidemic

Map the landscape of preparedness activities in DRC- Boende site from a One Health perspective + identify gaps

CONCLUSION

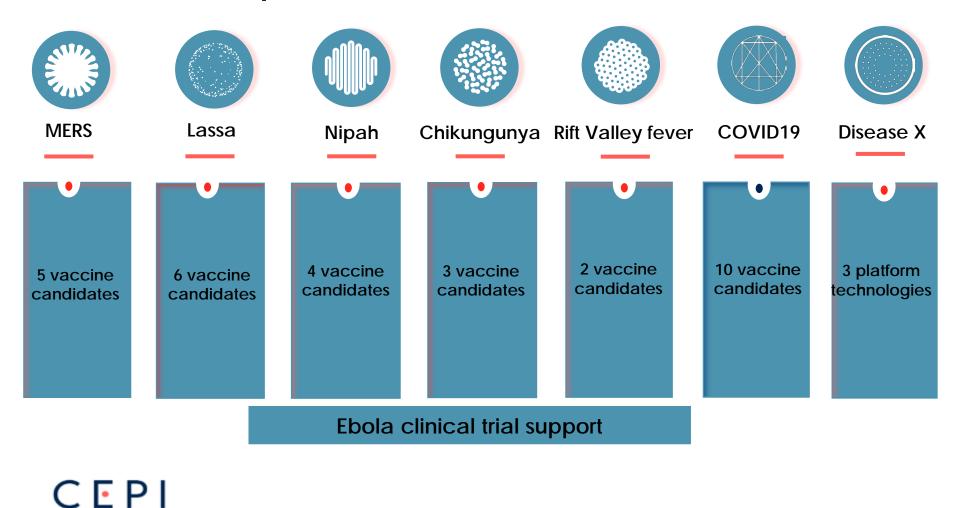
Crucial for (Ebola) epidemic preparedness

- o Relatively weak surveillance system
- o HCP & frontliners at higher risk of Ebola
- Duration of the protection of vaccination to be determined
- o Integrate the socio-anthropological components

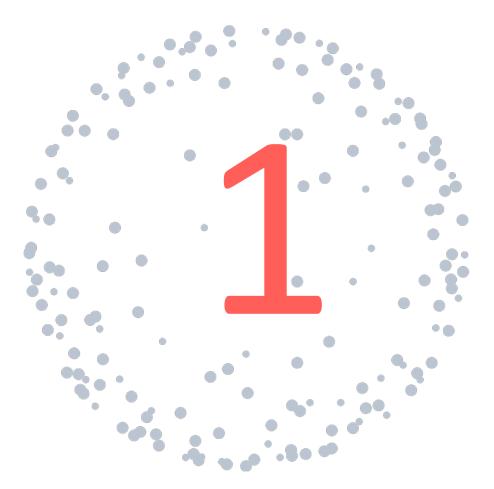

Within the EBOVAC projects: first time focus on HCP

Dr. Melanie SAVILLE Director of Research and Development

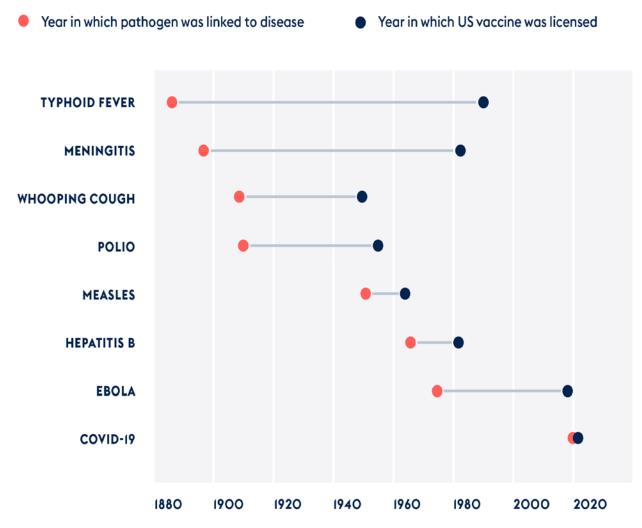
CEPI


Formation of CEPI

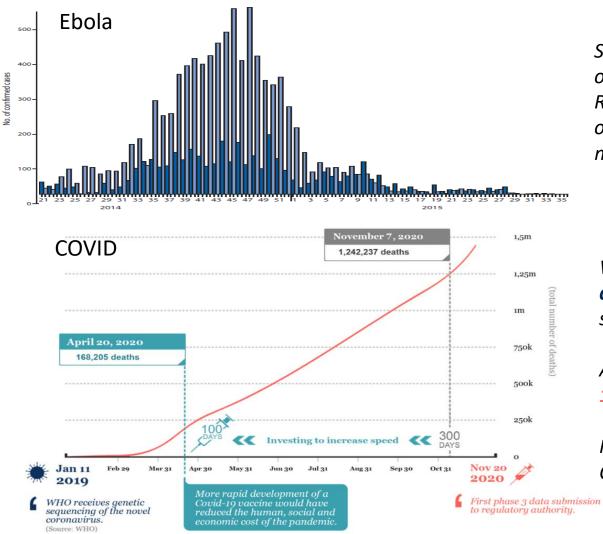
The global need for an organisation like CEPI was recognised after the devastating West African Ebola epidemic, which killed more than 11,000 people and had an economic and social burden of over \$53 billion.


CEPI was launched at Davos in 2017 by Norway, India, the Bill & Melinda Gates Foundation, the Wellcome Trust, and the World Economic Forum, as the result of a consensus that a coordinated, international, and intergovernmental plan was needed to develop and deploy new vaccines to prevent future epidemics.

CEPI's vaccine portfolio


Lessons learned from COVID-19 vaccine R&D

CEPI


Rapid progress in vaccine innovation

CEPI

EBOVAC projects Stakeholder meeting, 22 June 2021

Speed is of the essence in outbreak response

Significant research prior to the outbreak

Rapid deployment of vaccine but outbreak largely managed through non-pharmaceutical interventions

With COVID-19 it took about **300 days** from virus characterisation to submission of phase 3 data.

A moonshot to reduce this time to **100 days** for future outbreaks.

First test with **new variants** for COVID-19

How can we do better?

Vaccine Development

- o Role of rapid response platforms
- o Preclinical/clinical development

Regulatory

- o Platform master file labelling
- o Based on benefit risk assessment

Manufacturing

- Better global geographical footprint
- o Regional capacity

Vaccine introduction

- Post approval safety and
- effectiveness
- Recommendations

COVAX: paradigm shift

CEPI

COVAX: has brought a paradigm shift to global health

COVAX firsts

Beyond numbers...

Confirmed and eligible COVAX participants

USD raised within a year for AMC countries

Vaccine doses secured in 2021

... many "firsts" created by COVAX

First vaccine EULs granted for global use First labelling harmonization of its kind First global health safety monitoring system updated weekly First model I&L for AMCs with uniform language First no-fault compensation programme of its kind First global vaccine allocation mechanism First pandemic vaccine rollout to L(M)ICs within <3 months of first vaccinations First time global rollout of a vaccine requiring UCC

87.9Mn doses shipped to 131 countries and territories (as of June 16)

COVAX

CEPI, Gavi and the WHO are coleading COVAX, with key delivery partner UNICEF, to ensure equitable access to COVID-19 vaccines and end the acute phase of the pandemic by the end of 2021.

COVAX aims to deliver 2 billion doses by the end of 2021.

COVAX has so far shipped over 87.9 million COVID-19 vaccines to 131 participating economies

Another pandemic need never happen

Universal coronavirus vaccines

100-day vaccine development

Vaccine libraries for whole virus families

Global networks for lab capacity, assays, and preclinical models

 $\mathbf{C} \mathbf{P}$

When handling epidemics is not enough: the importance of prevention

Dr. Valérie ORIOL-MATHIEU

Overall health consequences of Ebola outbreaks go far beyond EVD morbidity and mortality

Ebola virus disease indirect effects on **population health** because resources are diverted from other health programs:

 HIV infections, malaria, tuberculosis, and human African trypanosomiasis, Maternal and infant health and primary care, Vaccination programs^{1,3}

EVD risk in HCW 2,4

o 21-32-fold higher in HCWs than in non-HCW adults

Social impact of West Africa outbreak with food insecurity, closure of schools, orphans, and heavy psychological impact on affected people, communities and HCWs^{3,4}

https://www.who.int/teams/health-product-and-policystandards/access-to-assistive-technology-medicaldevices/medical-devices/ppe/ppe-ebola accessed 19 June 2021

26.6%

12.8%

21.4%

Lessons from Sierra Leone's Ebola pandemic on the impact of school closures on girls https://theconversation.com/lessons.from.sierra-leones-ebol pandemic-on-the-impact-of-school-closures-on-girls-137837

accessed 29 June 2020

- Direct economic costs
- Impact on health care workforce
- Costs of Ebola-related deaths
- Costs of deployment of human resources from ex sub region
- Cost of social factors

35.5%

- Costs of treatment, infection control, and screening ex sub region
- Costs of long-term EVD sequelae

Estimates of the economic and social burden of the 2014-2016 Ebola virus disease outbreak, in billions USD¹

Economy ^{1,3}

- Global economic and social burden of the West Africa epidemic estimated up to US\$53.19 billion
- 1. Malvy, Ebola Virus Disease, The Lancet 2019
- Evans et al. "Health-care worker mortality and the legacy of the Ebola epidemic." The Lancet Global Health 3, no. 8 (2015): 439-440
- Huber and colleagues (2018) The economic and social burden of the 2014 Ebola outbreak in West Africa

Multiple Ebola Virus Disease risk groups can be identified

3 drivers of risk of EVD exposure 1-3

Occupation

- HCWs (Physicians, Nurses and Midwives, Labworkers, Dentists, Pharmacists, Other hospital personnel, such as admin, cleaning and washing staff, Community health workers, Traditional healers)
- People working with animals and/or meat, such as forrest rangers
- o Burial workers
- o Front line workers:
 - Security personnel (Military, Airport staff, police, border staff)
 - Transportation personnel, e.g. Ambulance / Taxi drivers
 - Other people having multiple interpersonal contacts (Religious/ Community leader, workers on markets / shops, sex workers)

Geography

 Regions prone to Ebola outbreaks (endemic in animals, chronic human carriers)

Temporary mission

 National / international response teams : people who are being deployed to areas with an outbreak

Despite progress, EVD prevention, treatment and control strategies are sub-optimal

Guidelines on EVD prevention and control strategies: ⁵⁻⁸

- Travel restrictions / Traveler screening measures
- o EVD case detection
- Contact-tracing
- o Community-based education
- Management of ill and deceased patients
- o Infection prevention for HCWs

Limited treatment options¹⁻⁴

- EVD management based on supportive care
- 2 US approved treatments / limited availability in Africa (a combination of three monoclonal antibodies and a human monoclonal antibody- mAb114)

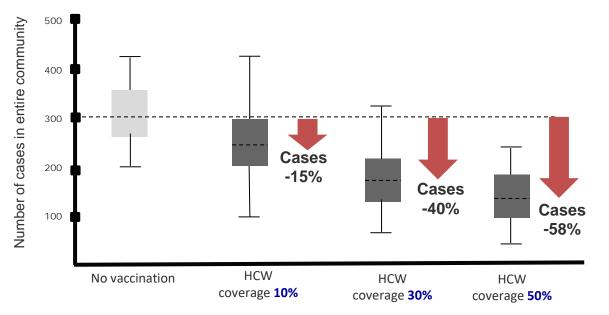
Sub-optimal implementation of measures in challenging environments:

- Limited resources in outbreak countries such as running water, stable power, PPE, and technical skills¹⁰
- Incoherent contact tracing methods resulting in incomplete identification of contacts^{11,12,13}
- o Political unrest and violence against civils¹⁴
 - 8. WHO | Ebola and Marburg virus disease epidemics: preparedness, alert, control, and evaluation. WHO (2014).
 - 9. IPAC. Ebola Virus Resources | IPAC Canada. https://ipac-canada.org/ebola-virus-resources.php.
 - Cooper C. et al. Infection prevention and control of the Ebola outbreak in Liberia, 2014-2015: Key challenges and successes. BMC Medicine 2016
 - 11. WHO | Contact tracing. https://www.who.int/csr/disease/ebola/training/contact-tracing/en/
 - Greiner, A. L. et al. Addressing contact tracing challenges-critical to halting Ebola virus disease transmission International Journal of Infectious Diseases 2015
 - Olu, O. O. et al. Contact Tracing during an Outbreak of Ebola Virus Disease in the Western Area Districts of Sierra Leone. Front. Public Heal. 2016
 - Kelly J.D. et all Impact of Different Types of Violence on Ebola Virus Transmission During the 2018–2020 Outbreak in DRC. JID 2020

EDA Approves First Treatment for Ebola Virus | FDA. (2020)

- Mulangu, S. et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019
 Will D https://www.thriat/gov/fiter/02.00.2010 accord at all virus disease therapeutics. N. Engl. J. Med. 2019
- WHO https://www.who.int/news/item/23-09-2019-second-ebola-vaccine-to-complement-ring-vaccination-givengreen-light-in-drc.
- . WHO. WHO | Infection prevention and control (IPC) guidance summary. WHO (2014).
- ECDC. Public health management of healthcare workers returning from Ebola affected areas

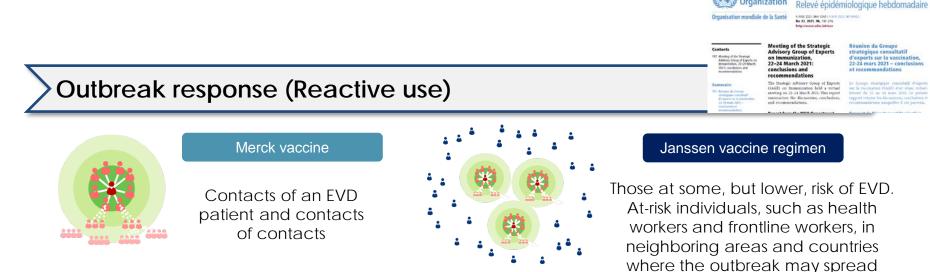
7. ECDC. Entry and exit screening options for EVD


EBOVAC projects Stakeholder meeting, 22 June 2021

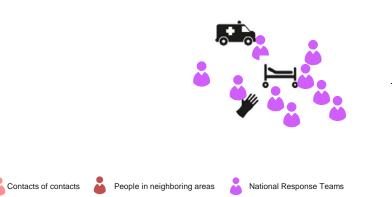
E. FDA Approves Treatment for Ebola Virus | FDA. (2020)

Potential impact of Ebola prophylactic vaccination

Compared to reactive vaccination, **prophylactic vaccination** has a greater impact on the mitigation and prevention of future Ebola epidemics ¹⁻³


Prophylactic vaccination of populations at high risk of acquiring and transmitting Ebolavirus infection – such as **HCWs** – can significantly reduce the number of cases in the whole community, **even at modest levels of coverage**²

Impact of different vaccination coverage rates in healthcare workers (Adapted from Robert, 2019)²


57% reduction of community cases achieved when prophylactically vaccinating **5% of the general population** in addition to 30% of HCWs¹

- . Potluri, R. et al. Impact of prophylactic vaccination strategies on Ebola virus transmission: A modeling analysis. PLoS One, 2020
- Robert, A. et al. Control of Ebola virus disease outbreaks: Comparison of health care worker-targeted and community vaccination strategies. Epidemics 2019
- Coltart, C. E. M., Johnson, A. M. & Whitty, C. J. M. Role of healthcare workers in early epidemic spread of Ebola: Policy implications of prophylactic compared to reactive vaccination policy in outbreak prevention and control. BMC Medicine 2015

WHO SAGE recommendations on Ebola have clarified Janssen Ebola vaccine use

In the absence of outbreak (Preventive or prophylactic use)

Janssen vaccine regimen

World Health Organization Weekly epidemiological record

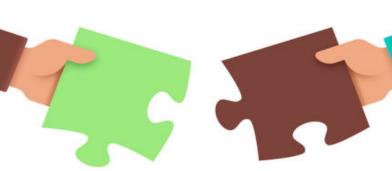
National Response Teams

+ International responders, Lab workers, Specialized research Units, Ebola Treatment Units

SAGE : Strategic Advisory Group of Experts on Immunization WHO Weekly Epidemiological Record 4 JUNE 2021, 96th YEAR /No 22, 2021, 96, 197–216/http://www.who.int/wer

Contacts of the index case

Index case


Potential broadening of SAGE recommendation

Broader preventive vaccination

SAGE did not recommend yet widespread preventive use:
o vaccine supply constraints
o unknown duration of protection
o more clarity on vaccine demand

"If Ebola vaccine supply were to increase, SAGE would be able to consider recommendations for preventive vaccination of people at risk in areas and countries that have a history of Zaire-strain EVD outbreaks." Stakeholder mobilization needs to continue to ensure progress towards broader preventive Ebola vaccination strategies

- o WHO prequalification
- Conditional Approval in Rwanda
- Temporary Use Approval in DRC
- o SAGE recommendation
- Expected WHO
 facilitated meeting with
 ~20 NRAs

- Continuing evidence generation (special populations, durability, effectiveness...)
- Modelling of various
 Ebola vaccination
 impact

- Expected involvement of GAVI and UNICEF
- Virtuous circle of increased demand and supply

- Building Ebola vaccination implementation experience (large studies, campaigns)
- Community engagement and use of technologies to support implementation
- Countries delineating national strategies and expressing demand

ebovaci ebovaci ebovaci

PANEL DISCUSSION

June 22nd, 2021 16:10 – 17:00 CET

The EBOVAC projects have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grants agreements EBOVAC1 n°115854, EBOVAC2 n°115861 and EBOVAC3 n°800176. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Association.

Panel members:

Pr. Yves LEVY Pr. Nicolas MEDA Dr. Pierre MEULIEN Pr. Hypolite MUHINDO Pr. Rodolphe THIEBAUT Pr. Andrew POLLARD Pr. Pierre Van DAMME Dr. Johan Van HOOF Pr. Deborah WATSON-JONES

Moderator:

Pr. Daniel G. BAUSCH

ebovaci ebovaci ebovaci

THANK YOU FOR YOUR PARTICIPATION!

The EBOVAC projects have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grants agreements EBOVAC1 n°115854, EBOVAC2 n°115861 and EBOVAC3 n°800176. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Association.

ACKNOWLEDGEMENTS

Thank you to all volunteers, investigators and their staff and all our partners

